Channel Avatar

ElhosseiniAcademy @[email protected]

30K subscribers - no pronouns :c

Welcome to the official channel of Prof. Mostafa Elhosseini


32:47
📊 Regression: From Data Points to Real-World Predictions
33:08
📊 Scatter Plots & Correlation | فهم العلاقات بين المتغيرات الكمية
20:01
📊 Understanding Kurtosis in Data Analysis 📈
25:38
📊 Symmetry, Skewness, and Statistical Measures 📈
46:23
Lecture 05: What Kinds of Patterns Can Be Mined? 🔍📊
31:03
Lecture 04: What Kinds of Data Can Be Mined? 🔍 | Exploring Databases, Data Warehouses & More
21:46
Lecture 03: Knowledge Discovery Process 🚀 | KDD in Action
09:13
Lecture 02: Market Basket Analysis - Example | Data Mining & Data Warehouse
30:23
Lecture 01: Introduction 🚀 | Data Mining & Data Warehouse
36:25
Lecture 83: 🚀 Mastering AdaBoost: A Deep Dive into Boosting with Handy Examples | Ensemble Learning
28:08
Lecture 82: Random Forests: Extra Trees, and Feature Importance Explained! 🌳📧 | Ensemble Learning
13:26
Lecture 81: Out-of-Bag Evaluation & Random Patches | Ensemble Learning
20:49
Lecture 80: Bagging & Pasting 🤝✨ | Ensemble Learning
20:56
Lecture 79: Hard Voting & Soft Voting | Ensemble Learning
16:07
Lecture 78: 🎓 Predicting Graduate Admissions with Decision Trees! 📈
21:56
Lecture 77: 🌳 Decision Trees for Regression Explained with Hands-On Example! 📊
14:51
Lecture 76: How to Split a Decision Tree Based on Continuous Features 🌳📊
14:12
Lecture 75: How to Prevent Decision Trees from Overfitting 🌳🚫
24:43
Lecture 74: Demystifying Entropy in Decision Trees 🔥🌳
19:29
Lecture 73: Mastering the Gini Impurity Index 🎯📊
30:20
Lecture 72: DT vs. Random Forest – Understanding the White Box Model 🌳
26:13
Lecture 71: 📚 Decision Tree Part 01 - Introduction 🌳
31:56
Lecture 70: Radial Basis Function (RBF) - Continued | SVM
39:04
Lecture 69: Radial Basis Function (RBF) | SVM
12:55
Lecture 67: 🚀 Kernel Trick
24:33
Lecture 68: Polynomial Kernel | SVM
26:30
Lecture 66: 🚀 Error function | Support Vector Classifier (SVC)
24:29
Lecture 65: 🚀 Support Vector Classifier (SVC)
27:00
Lecture 64: Softmax Regression By Hand | Implementation
36:42
Lecture 63: Softmax Regression
25:42
Lecture 62: Logistic Regression Applications [Iris - Diabetes]
45:52
Lecture 61: Logistic Regression
22:12
Lecture 60: Perceptron Applications - Spam Email Filter
30:28
Lecture 59: Perceptron Algorithm Implementation
29:27
Lecture 58: Error Functions and the Perceptron Trick
01:11:01
Lecture 57: Perceptron Basics: Understanding Linear Classifiers
17:29
Lecture 56: Early Stopping
26:12
Lecture 55: Lasso & Elastic Net Regularization
26:40
Lecture 54: Ridge Regularization
30:11
Lecture 53: Introduction to Regularization
39:47
Lecture 52: Cross Validation - Learning Curves
27:27
Lecture 51: Polynomial Regression
39:58
Lecture 50: Gradient Descent (Batch - Stochastic - MiniBatch) | Linear Regression
19:38
Lecture 49: Error Functions - Healthcare Application | Linear Regression
25:13
Lecture 48: Square - Absolute Trick | Linear Regression
35:43
Lecture 47: Simple Trick | Linear Regression
46:40
Lecture 46: Normal Equation | Linear Regression
09:48
Lecture 45: Multioutput Classification
12:56
Lecture 44: MultiLabel Classification
24:28
Lecture 43: Error Analysis
23:29
Lecture 42: Multiclass (Multinomial) Classification
25:15
Lecture 41: Receiver Operating Characteristic (ROC) curve
21:46
Lecture 40: 📈 Precision/Recall Curves Decoded: Visualizing the Impact of Threshold Adjustments 📊
15:23
Lecture 39: Precision vs. Recall: Finding the Perfect Balance 📊
29:47
Lecture 38: Confusion Matrix
19:33
Lecture 37: 🎯 Unveiling the Truth: The Limits of Accuracy in Model Evaluation 🔄
16:19
Lecture 36: Binary Classification through MNIST Dataset
14:55
Lecture 35: From Code to Cloud: Mastering System Deployment and Monitoring
17:40
Lecture 34: Confidence Intervals & the Empirical Rule, and Your Pre-Deployment Checklist
12:01
Lecture 33: Beyond the Black Box: Feature Importance & Error Analysis